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ABSTRACT 

This is an interim report which summarizes work during 

the past six months on a theoretical 

of the interaction between a drifting stream of electrons 

study of so S 

with transverse cyclotron motions and an electromagnetic 

field. 

generation and amplification of millimeter waves. 

report includes a discussion of the use of a digital computer 

t o  obtain start oscillation conditions for a spiraling 

filamentary electron beam in a cavity for a range of beam 

Particular emphasis is given t o  the possible 

The 

and cavity parameters. The report also includes an 

extension of the previous coupled mode theory to cover the 

interaction of a spiraling hol1ow electron beam with a square 

waveguide. 

consequences of symmetry on the interaction between an 

electron beam and a waveguide is mentioned. 

Finally the initiation of a study on the 
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I. INTRODUCTION 

The objective of this research program is to explore 

theoretically some aspects of the intera 

drifting stream of electrons having transverse cyclotron 

motions and an electromagnetic field; .particular emphasis 

being given to the possible generation and amplification 

of millimeter waves. 

applications to millimeter wavelengths, this study concentrates 

B.ecause of the interest in possible 

on electron stream - electromagnetic field interactions 
which involve an uniform, or fast-wave) circuit structure. 

This interim report summarizes the current status of 

the small signal coupled mode theory for the interaction 

of a spiraling filamentary electron beam with the TEIO and 

TEOl modes o f  a square warveguide. A method is presented 

for using the Cornell IRM/360 digital computer to obtain 

the start oscillation conditions for a spiraling filamentary 

electron beam in a rectangular cavity for a wide range of 

electron beam and cavity parameters. An extension of the 

previous coupled mode theory to cover the interaction of 

a spiraling hollow electron beam with a square waveguide 

is presented, and it is shown that, to a first approximation 

ast, the analys is similar to that €or t 

ron beam. Finally, the initi 

equences of symmetry on the interaction 

on beam and a waveguide is mentioned. 
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11. S P I W I N G  FILAMENTARY ELECTRON BEAM INTERACTION 

A. Star t  Oscil lation Conditions from Coupled Mode The0 

A small signal,  coupled mode theory for n 

between a spiral ing filamentary electron beam and the circuie  

waves of an uniform waveguide has been developed. Some 

aspects of t h i s  theory have been presented i n  previous 

Semiannual Status Reports The theory has recently been 

applied t o  the interaction of a spiral ing filamentary electron 

beam with the f ie lds  of a cavity t o  obtain the s t a r t  

osc i l la t ion  conditions., The analysis includes the e f fec ts  

of both the wall l o s s  and the coupling t o  the external c i rcu i t  

on the s t a r t  osc i l la t ion  current and frequency 

The interaction cavity i s  assumed t o  be a rectangular 

box with a square cross section of-width a and length L. 

considerable simplification in  the analysis i s  j u s t i f i ed  

by noting tha t ,  i n  most cases, for normal operation the 

diameter of the spiral ing filamentary electron beam w i l l  be 

much smaller than the width of the cavity.  

A 

The r a t i o  of 

the beam diameter t o  the waveguide width w i l l  be of  the order of 

1 0 m 3 5 ,  where V, i s  the d-c bean voltage. For values of 

the beam voltage less  than 10,000 vol ts ,  the beam diameter 

w i l l  be less  than 10 percent of the waveguide width. As a 

‘consequence, for the case of interact ion with the TEIO and 

TEOl modes, one can neglect the var ia t ion of the e l ec t r i c  

ds  over the beam diameter, and also neglect 



the interact ion of the beam with the longitudinal r - f  

magnetic f i e ld .  That i s ,  i f  the electron beam i s  centered 

in  the cavity,  it sees an essent ia l ly  plane electromagnetic 

wave with transverse e l ec t r i c  and magnetic f ie lds .  

Of the t o t a l  of ten waves, s ix  beam waves and four 

c i r cu i t  waves, on ly  s ix  in te rac t  appreciably .' 
waves include t w o  cyclotron-type waves (P+ and P-), the 

longitudinal veloci ty> and displacement waves (V and W ) ,  and 

These s i x  
I t 

the forward and reverse posit ive c i rcu lar ly  polarized c i r cu i t  

waves (F'+ and G+). 

configuration i s  shown in  Figure 1. The spiraling filamentary 

t 1 

A schematic sketch of the osc i l la tor  

electron beam originates a t  the l e f t  and terminates on a 

short c i r cu i t  plane on the r igh t .  A posi t ive circular ly  

polarized input wave F i s  assumed incident on the l e f t ,  

for 

t 

t 
3.i 

with a posi t ive c i rcu lar ly  polarized output  wave G+o 

emerging from the same plane. The s t a r t  osc i l la t ion  conditions 

for  the cavity are those par t icular  s e t s  of electron beam 

and cavity parameers which cause the r a t i o  G 
1 t _ .  

/F +o +i 

B. Computer Calculation of the S tar t  Oscil lation Conditions 

The IBM 360 d i g i t a l  computer a t  Cornell University has 

been programmed t o  determine the s t a r t  osc i l la t ion  conditions 

for 2 variety of electron beam and cavity parameters. F i r s t ,  

the coupled mode equations for the s ix  coupled waves are 

solved t o  give the s i x  propagation constants for the coupled 

system. The r o o t s  are extracted using general complex r o o t  

3 
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FIGURE 1. Oscillator Configuration for a Spiraling 

Filamentary Electron Beam in a 

Rectangular Cavity. 
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finder; the Double Precision mode i s  used and the roo t s  are 

generated t o  eight place accuracy. The e f fec t  of the f i n i t e  

conductivity of the cavity walls i s  introduced a t  t h i s  point 

by accounting for the attenuation i n  the c i r cu i t  wave equations. 

Copper walls for  the cavity have been expl ic i t ly  assumed, 

but any other material could be easi ly  substi tuted i n  the 

calculation. 

After the s ix  perturbed propagation constants have been 

determined, the boundary conditions are applied t o  determine 

the re la t ive  amplitudes of the various waves of the system. 

These boundary conditions are : 

(1) a l l  a-c ve loc i t ies  and displacements of the electron 

beam are zero a t  the l e f t  plane of the cavity, 

(2) the r a t i o  of the transverse e l ec t r i c  f i e ld  t o  the 

transverse magnetic f i e l d  a t  the r igh t  plane of 

the cavity i s  equal t o  the surface impedance of 

the wall material, 

(3) the transverse e l ec t r i c  and magnetic f ie lds  a t  
.. 

the l e f t  plane of the cavity are continuous, and 

(4 )  the impedance looking t o  the l e f t  a t  the l e f t  plane 

of the cavity i s  Z1 = U Z ,  where 2 i s  the character is t ic  

impedance of the square waveguide which. forms the 

cavity. 

The fourth boundary condition allows the e f fec t  of the 

coupling t o  the external c i r cu i t  t o  be varied i n  the calculation 

of the s t a r t  osc i l la t ion  conditions. 

5 '  



In t h i s  coupled wave system, there c re  s i x  beam and 

c i r cu i t  modes i n  the interaction region plus an output 

c i r cu i t  wave which must be determined i n  terms of the input 

c i r c u i t  wave. In  the interaction region, each mode has a 

contribution from a l l  s i x  of the perturbed propagation 

constants, i n  general. Thus, i n  principle,  a t o t a l  of th i r ty-  

seven constants must be determined t o  solve the system. I n  

f ac t ,  various simplifications which may be applied t o  t h i s  

par t icular  system reduce the number t o  twenty-seven. 

Application of the boundary conditions and the coupled wave 

equations lead t o  a l inear  system of twenty-seven simultaneous 

algebraic equations for the mode amplitudes i n  the in te r -  

action region and the output. These equations are writ ten 

i n  matrix form, and the computer, programed in  the Double 

Precision Fortran G mode, solves for the output c i r c u i t  wave 

using a Gauss elimination algorithm. Since the amplitude 

of the input c i r cu i t  wave i s  taken as unity, the amplitude 

of  the output c i r c u i t  wave i s  the gain of the system considered 

as a one-port amplifier. I f  t h i s  gain exceeds the a rb i t r a r i l y  

selected value of one hundred, a s ta r t  osc i l la t ion  condition 

i s  assumed t o  ex i s t .  

The determination of the s f a r t  osc i l la t ion  conditions 

requires the specification of m o s t  of the  cavity and electron 

beam parameters, and a search for  a p o l e  i n  the gain while 

one o r  two  parameters are varied, The following parameters 



have been Eixed for an i n i t i a l  survey of s t a r t  osc i l la t ion  

conditions: 

f i x  rl = 0.9805, and correspond t o  a d-c beam voltage 

Vo = 5050 vo l t s ) ,  a = 1.6655 centimeters (corresponding t o  

a waveguide cutoff frequency of 9.00 GHz) .  In addition, 

several values of the cyclotron frequency between 10 GHz 

and.12 GHz and of the d-c beam current between 0 . 1  ma and 

1 . 0  ma w i l l  be explored. In each case the length of the 

cavity i s  chosen t o  be about a half  wavelength a t  the operating 

0 = zo/c = 0.010, = W r /c = 0.20 (these c o  

-L 

frequenky For 

t r i a l  values of  

factor U (which 

are t r i e d  u n t i l  

a given s e t  of the parameters l i s t e d  above, 

the osc i l la t ion  frequency and cavity coupling 

can be related t o  the Qx for  the cavity) 

a pole of the gain i s  located; t h i s  determines 

the s t a r t  osc i l la t ion  conditions for tha t  parameter s e t .  

Experience with the computer i n  determing some s t a r t  

osc i l la t ion  points has shown tha t  the gain poles can be 

determined with only a few t r i a l s  once a l i t t l e  experience 

has been accumulated. 

the start  osc i l la t ion  conditions has been in i t i a t ed ,  and 

the r e su l t s  w i l l  be reported i n  the future.  

A program of systematically exploring 
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111. SPIRALJNG HGLLGW ELECTRON BEAM INTERACTION 

A. Model 

The small s ignal ,  coupled mode theory for  the interaction 
. .  

of a spiral ing filamentary electron beam with an uniform 

waveguide has been extended t o  cover the interaction of a 

spiral ing hollow electron beam. It i s  assumed that  the 

electron beam i s  i n  the form of a sheath of infinitesimal 

thickness which ro ta tes  a t  the r e l a t i v i s t i c  cyclotron frequency, 

€lo = 

i n  t h i s  analysis i s  essent ia l ly  the same as in  the spiral ing 

W.c, and has a radius of ro. The notation t o  be used 

filamentary electron beam analysis (see reference 1). 

The major difference for the hollow beam case i s  that  

the poss ib i l i ty  of azimuthal variations of the beam ve loc i t ies  

and displacements must be allowed for ,  

w i l l ,  i n  general, be functions of x, y ,  z and t. In a small 

signal theory the dependence on x and y can be accounted 

for  by recal l ing tha t  the d-c position of an electron in  

the transverse plane i s  

The beam quant i t ies  

y, = r s in  (TP,Z + @ I ,  ( W  0 

where 
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of the electron a t  the entrance plane z = 0.  

dependence on x and y can be eliminated by expressing x and 

y terms of z and Q I .  

i s  the axial  d-c velocity,  and PI i s  the angular position 
zO 

Thus the expl ic i t  

c 

Since the beam quant i t ies  must be periodic i n  0, they 

may be writ ten using a Four ie r  ser ies  i n  (8. 

the transverse ve loc i t ies  are given by 

For example, 

with similar expressions for  the other beam quant i t ies .  

For simplicity, a t tent ion i s  res t r ic ted  here t o  the 

interaction of a spiral ing hollow electron beam with plane 

electromagnetic waves. This does include, however,the 

interaction with the TEIO and TEOl modes of a square wave- 

guide fo r  typical operating conditions in  which the beam 

diameter i s  small compared t o  the waveguide cross section 

(see Section I1 above). Following the previous analysis, 

the posi t ive and negative c i rcu lar ly  polarized forward and 

reverse c i rcu i t  wave amplitudes are defined by 

9 



Here, E+ and H+ are  the amplitudes of the posi t ive and negative 

c i rcu lar ly  polarized e l e c t r i c  and magnetic f i e l d  components 

a t  the center of the square waveguide. 

- - 

B .  Coupled Mode Equations 

The s ix  beam wave equations are obtained from the three 

r e l a t i v i s t i c  equations of motion and the three equations 

re la t ing  the velocity components t o  the displacement components. 

By using the orthogonality properties of the Fourier components 

of the beam variables,  the s ix  beam wave equations are 

decomposed in to  an i n f i n i t e  set of  groups of s ix  equations. 

The four c i r cu i t  wave equations are obtained from the Mam7ell 

cur l  equations. 

For convenience in  the coupled mode system, the following 

normalized Fourier components of the beam variables are  

defined in  Equations (4) The inverse of these equations, 

o r  the beam variables in  terms of the normalized values, 

are given in  Equations (5). The normalized values are 

defined i n  t h i s  manner i n  order  t o  obtain the appropriate 

eigenvectors of the uncoupled system. 

t r i .  1 

10 



c - 
CT 1 

E L \u , U' 
- , m  M - , m  

LlJ 
2M 'm ' z l , m  = 

M =  ,/% 
The physical beam variables are,  of course, obtained by summing 

the appropriate Fourier ser ies  using the Fourier  components 

defined in  Equations ( 4 )  and (5) .  

Using these definit ions for the normalized beam variables,  

and the expressions i n  Equations ( 3 )  for  the normalized c i r cu i t  

waves, the ten coupled mode equations are  given below. 
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In  these equations, 4 and 2 are  the propagation constant 

and charac te r i s t ic  impedance , respectively , for  the uncoupled 

waveguide, Zo =,/=, and 6 (m,p) i s  one f o r  m = p and 

zero for  m f p *  

C. Discussion of the Coupled Mode Equations 

Examination of the ten coupled wave equations given 

i n  (7a) - ( 7 j )  shows tha t  there i s  coupling between some 

of the d i f fe ren t  Fourier components of some of the beam waves. 

This coupling i s  caused by r e l a t i v i s t i c  e f fec ts ,  since i n  

the nonrk la t iv i s t ic  l i m i t ,  CT = f = 0,  the coupling disappears. 

The coupling between the d i f fe ren t  Fourier components 

of the beam waves divides the Fourier components i n to  t w o  
I I 1 

groups. In  one group , U +,m3 u '  - ,m3 %,m¶ Q-,m f o r  m even 

and Vm, Wm for  m odd all couple together; while i n  the other 

group, the remaining Fourier components couple together. 

It i s  a l s o  seen tha t  the c i r cu i t  waves couple only t o  the 

former group of beam wave Fourier components, a t  least  for  

TEM c i r c u i t  waves. Thus, for  the interact ion of a spiral ing 

hollow electron beam with the TELO and TEO1'modes of a square 

_ .  

waveguide (with the s m a l l  beam diameter approximation made 

above), then only the f i r s t  group of beam wave Fourier 

components w i l l  be excited and the second group can be taken 

.to be zero. 

Although an i n f i n i t e  set  of Fourier components f o r  the 

beam waves w i l l  be generated, i n  general, a reasonable f i r s t  

14 



approximation f 

electron beam interaction is 

the uncoupled b 

The region of possible interaction where amgliEication or 

oscillation might occur involves Us,oJ F+> G+’ v-1, and WS1 

in the neighborhood of  the intersection of the co- 

of the firsta t,wo of these waves. 

1 1 I 

curves cj 

With the approximations and simplifications which have 

.been made above, the coupled mode analysis for the spiraling 

hollow electron beam is essentially similar in form t o  that 

for the spiraling filamentary electron beam. Therefore, 

one would expect that the results of the analysis would also 

be similar. In addition, one should be able to u s e  the same 

computer techniques for the investigation of gain, and of 

start ,. oscillation conditions, with only minor modifications. 
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FIGURE 2 .  w-B Diagram f o r  Uncoupled Waves of a S p i r a l i n g  

Hollow E l e c t r o n  Beam and a Square Waveguide. 



IV. CONSEQUENCES OF SS?MJ!EfT 

no research has been done and few resu l t s  are  available, 

the study i s  proceeding s l o w l y  t o  es tab l i sh  a firm foundation. 

According t o  i t s  geometric symmetry, any s t ructure  

(e i ther  microwave c i r cu i t  o r  electron beam) may be c lass i f ied  

i n  a symmetry group. This symmetry group contains the se t  

of a l l  symmetry operations (e.g. ,  re f lec t ions ,  rotat ions,  

inversions) for which the s t ructure  i s  invariant.  This 

symmetry group may be ident i f ied  with an abstract  group 

containing the same nurnber of group operations, but which 

are  not necessarily associated with geometric or physical 

transformations. 

2 

To each abstract  group one can assign matrices chosen 

s o .  that  they are invariant under the s e t  of group operations. 

These matrices are cal led representations of the group. 

It i s  shown in  group theory that  for each abstract  group 

there i s  a par t icu lar  s e t  of matrices ( i . e . ,  a par t icu lar  

set of representations) which i s  s i m p l e r  than any other, 

17 



It i s  kncwn from the theory of  l inePr operators t ha t  

the irreducible representations of the symmetry groups 

play an important r o l e  i n  characterizing the eigenvalues 

and the eigenvectors of physical systems and i n  determining 

the poss ib i l i ty  of coupling between t w o  systems. The study 

currently i n  progress has considered some waveguides belonging 

t o  par t icu lar  symmetry groups, and the possible consequences 

of perturbations with cer ta in  symmetry properties.  

perturbations, for  example, might be due t o  an electron beam. 

It i s  hoped t o  exploit  the theory of group representations 

t o  obtain information concerning the interact ion between an 

electron beam and a waveguide. 

These 
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